์ดํƒœํ™
ํ™'story
์ดํƒœํ™
์ „์ฒด ๋ฐฉ๋ฌธ์ž
์˜ค๋Š˜
์–ด์ œ
  • ๋ถ„๋ฅ˜ ์ „์ฒด๋ณด๊ธฐ (171)
    • TW (39)
    • AI (47)
      • ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ (10)
      • Kaggle (2)
      • Machine Learning (26)
      • Computer Vision (0)
      • Deep Learning (0)
      • ROS2 (7)
    • Computer Science (29)
      • Data Structure (0)
      • Algorithm (18)
      • Computer Architecture (5)
      • SOLID (0)
      • System Programing (6)
    • LOLPAGO (10)
      • ํ”„๋ก ํŠธ์—”๋“œ (10)
      • ๋ฐฑ์—”๋“œ (0)
    • BAEKJOON (2)
    • React (5)
    • ์–ธ์–ด (8)
      • C++ (8)
    • GIT (0)
    • MOGAKCO (19)
    • ๋ฏธ๊ตญ ์—ฌํ–‰๊ธฐ (3)
    • etc. (7)
      • Blog (2)
      • ์ฝœ๋ผํ†ค (2)

๋ธ”๋กœ๊ทธ ๋ฉ”๋‰ด

  • ํ™ˆ
  • ํƒœ๊ทธ
  • ๋ฐฉ๋ช…๋ก

๊ณต์ง€์‚ฌํ•ญ

์ธ๊ธฐ ๊ธ€

ํƒœ๊ทธ

  • pytorch
  • ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ•
  • NLP
  • LOLPAGO
  • ML
  • ๊ธฐ๊ณ„ํ•™์Šต
  • tw
  • ์•Œ๊ณ ๋ฆฌ์ฆ˜
  • ๋ฐฑ์ค€
  • ๋”ฅ๋Ÿฌ๋‹
  • computerscience
  • ๋จธ์‹ ๋Ÿฌ๋‹
  • ROS2
  • C++
  • computer architecture
  • kaggle
  • algorithm
  • react
  • Ai
  • baekjoon

์ตœ๊ทผ ๋Œ“๊ธ€

์ตœ๊ทผ ๊ธ€

ํ‹ฐ์Šคํ† ๋ฆฌ

hELLO ยท Designed By ์ •์ƒ์šฐ.
์ดํƒœํ™

ํ™'story

[ML] ํ•ธ์ฆˆ์˜จ ๋จธ์‹ ๋Ÿฌ๋‹ - 10(ํ•˜์œ„ ํด๋ž˜์Šค API๋กœ ๋™์  ๋ชจ๋ธ ๋งŒ๋“ค๊ธฐ)
AI/Machine Learning

[ML] ํ•ธ์ฆˆ์˜จ ๋จธ์‹ ๋Ÿฌ๋‹ - 10(ํ•˜์œ„ ํด๋ž˜์Šค API๋กœ ๋™์  ๋ชจ๋ธ ๋งŒ๋“ค๊ธฐ)

2023. 1. 3. 02:58

๐Ÿ”Ž ํ•˜์œ„ํด๋ž˜์Šค(Subclassing) API๋กœ ๋™์  ๋ชจ๋ธ ๋งŒ๋“ค๊ธฐ

๋ฐ˜๋ณต๋ฌธ์„ ํฌํ•จํ•˜๊ณ  ๋‹ค์–‘ํ•œ ํฌ๊ธฐ๋ฅผ ๋‹ค๋ฃจ์–ด์•ผ ํ•˜๋ฉฐ ์กฐ๊ฑด๋ฌธ์„ ๊ฐ€์ง€๋Š” ๋“ฑ ์—ฌ๋Ÿฌ๊ฐ€์ง€ ๋™์ ์ธ ๊ตฌ์กฐ๋ฅผ ํ•„์š”๋กœ ํ•˜๋Š” ๊ฒฝ์šฐ ๋ช…๋ นํ˜• ํ”„๋กœ๊ทธ๋žจ์ด ์Šคํƒ€์ผ์ธ ์„œ๋ธŒํด๋ž˜์‹ฑ API๋ฅผ ํ†ตํ•ด ๋ชจ๋ธ์„ ๋งŒ๋“ค์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.

 

 

๊ตฌ์„ฑ

Model ํด๋ž˜์Šค ์ƒ์†

  - ์ดˆ๊ธฐ ์„ค์ • ๋ฉ”์„œ๋“œ __init__()์„ ์ด์šฉํ•˜์—ฌ ์€๋‹‰์ธต๊ณผ ์ถœ๋ ฅ์ธต์„ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค.

  - call()๋ฉ”์†Œ๋“œ๋ฅผ ์ด์šฉํ•˜์—ฌ ์ธต์„ ๋™์ ์œผ๋กœ ๊ตฌ์„ฑ์ด ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค.

 

 

๋‹จ์ 

ํ•˜์ง€๋งŒ ๋ชจ๋ธ ๊ตฌ์กฐ๊ฐ€ call()๋ฉ”์„œ๋“œ ์•ˆ์— ์ˆจ๊ฒจ์ ธ ์žˆ์–ด์„œ ์ผ€๋ผ์Šค๊ฐ€ ๋ถ„์„ํ•˜๊ธฐ๊ฐ€ ์–ด๋ ต์Šต๋‹ˆ๋‹ค.

์ฆ‰, ๋ชจ๋ธ ์ €์žฅ ๋ฐ ๋ณต์‚ฌ๊ฐ€ ๋ถˆ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค.

 

๋˜ํ•œ summary() ๋ฉ”์„œ๋“œ ํ™œ์šฉ์ด ์ œํ•œ๋ฉ๋‹ˆ๋‹ค.

์ธต์˜ ๋ชฉ๋ก๋งŒ ํ™•์ธ์ด ๊ฐ€๋Šฅํ•˜๋ฉฐ ์ธต๊ฐ„์˜ ์—ฐ๊ฒฐ ์ •๋ณด๋ฅผ ์•Œ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.

 

์ผ€๋ผ์Šค๊ฐ€ ํƒ€์ž…๊ณผ ํฌ๊ธฐ๋ฅผ ๋ฏธ๋ฆฌ ํ™•์ธํ•  ์ˆ˜ ์—†๊ธฐ ๋–„๋ฌธ์— ์‹ค์ˆ˜๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

 

 

์˜ˆ์ œ์ฝ”๋“œ

# WideAndDeepModel ํด๋ž˜์Šค
class WideAndDeepModel(keras.models.Model):
    def __init__(self, units=30, activation="relu", **kwargs):
        super().__init__(**kwargs)
        self.hidden1 = keras.layers.Dense(units, activation=activation)
        self.hidden2 = keras.layers.Dense(units, activation=activation)
        self.main_output = keras.layers.Dense(1)
        self.aux_output = keras.layers.Dense(1)

    def call(self, inputs):
        input_A, input_B = inputs
        hidden1 = self.hidden1(input_B)
        hidden2 = self.hidden2(hidden1)
        concat = keras.layers.concatenate([input_A, hidden2])
        main_output = self.main_output(concat)
        aux_output = self.aux_output(hidden2)
        return main_output, aux_output

model = WideAndDeepModel(30, activation="relu")

'AI > Machine Learning' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€

[ML] ํ•ธ์ฆˆ์˜จ ๋จธ์‹ ๋Ÿฌ๋‹ - 10์žฅ(ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹)  (0) 2023.01.06
[ML] ํ•ธ์ฆˆ์˜จ ๋จธ์‹ ๋Ÿฌ๋‹ - 10์žฅ(๋‹ค์–‘ํ•œ ๋ชจ๋ธ ๋งŒ๋“ค๊ธฐ)  (0) 2023.01.03
[ML] Neural Network(6) - ์—ญ์ „ํŒŒ(Backpropagation)(2)  (0) 2022.12.06
[ML] Neural Network(5) - ์—ญ์ „ํŒŒ(Backpropagation)(1)  (0) 2022.12.06
[ML] Neural Network(4) - ์ˆœ์ „ํŒŒ(Feedforward Process)  (0) 2022.12.01
    'AI/Machine Learning' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€
    • [ML] ํ•ธ์ฆˆ์˜จ ๋จธ์‹ ๋Ÿฌ๋‹ - 10์žฅ(ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹)
    • [ML] ํ•ธ์ฆˆ์˜จ ๋จธ์‹ ๋Ÿฌ๋‹ - 10์žฅ(๋‹ค์–‘ํ•œ ๋ชจ๋ธ ๋งŒ๋“ค๊ธฐ)
    • [ML] Neural Network(6) - ์—ญ์ „ํŒŒ(Backpropagation)(2)
    • [ML] Neural Network(5) - ์—ญ์ „ํŒŒ(Backpropagation)(1)
    ์ดํƒœํ™
    ์ดํƒœํ™
    ๊ณต๋ถ€ํ•˜์ž ํƒœํ™์•„

    ํ‹ฐ์Šคํ† ๋ฆฌํˆด๋ฐ”