์ดํƒœํ™
ํ™'story
์ดํƒœํ™
์ „์ฒด ๋ฐฉ๋ฌธ์ž
์˜ค๋Š˜
์–ด์ œ
  • ๋ถ„๋ฅ˜ ์ „์ฒด๋ณด๊ธฐ (171)
    • TW (39)
    • AI (47)
      • ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ (10)
      • Kaggle (2)
      • Machine Learning (26)
      • Computer Vision (0)
      • Deep Learning (0)
      • ROS2 (7)
    • Computer Science (29)
      • Data Structure (0)
      • Algorithm (18)
      • Computer Architecture (5)
      • SOLID (0)
      • System Programing (6)
    • LOLPAGO (10)
      • ํ”„๋ก ํŠธ์—”๋“œ (10)
      • ๋ฐฑ์—”๋“œ (0)
    • BAEKJOON (2)
    • React (5)
    • ์–ธ์–ด (8)
      • C++ (8)
    • GIT (0)
    • MOGAKCO (19)
    • ๋ฏธ๊ตญ ์—ฌํ–‰๊ธฐ (3)
    • etc. (7)
      • Blog (2)
      • ์ฝœ๋ผํ†ค (2)

๋ธ”๋กœ๊ทธ ๋ฉ”๋‰ด

  • ํ™ˆ
  • ํƒœ๊ทธ
  • ๋ฐฉ๋ช…๋ก

๊ณต์ง€์‚ฌํ•ญ

์ธ๊ธฐ ๊ธ€

ํƒœ๊ทธ

  • ROS2
  • baekjoon
  • ๊ธฐ๊ณ„ํ•™์Šต
  • algorithm
  • ์•Œ๊ณ ๋ฆฌ์ฆ˜
  • react
  • computer architecture
  • Ai
  • computerscience
  • ๋ฐฑ์ค€
  • pytorch
  • ML
  • ๋”ฅ๋Ÿฌ๋‹
  • kaggle
  • LOLPAGO
  • NLP
  • tw
  • ๋จธ์‹ ๋Ÿฌ๋‹
  • ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ•
  • C++

์ตœ๊ทผ ๋Œ“๊ธ€

์ตœ๊ทผ ๊ธ€

ํ‹ฐ์Šคํ† ๋ฆฌ

hELLO ยท Designed By ์ •์ƒ์šฐ.
์ดํƒœํ™

ํ™'story

[ML] Nearest Neighbor Method - Distance Metric(1)
AI/Machine Learning

[ML] Nearest Neighbor Method - Distance Metric(1)

2022. 11. 11. 18:52

๐Ÿค” KNN(K - Nearest Neighors Classifier)

KNN์ด๋ž€ ๋ง ๊ทธ๋Œ€๋กœ K๊ฐœ์˜ ๊ฐ€์žฅ ๊ฐ€๊นŒ์šด ์ด์›ƒ(๋ฐ์ดํ„ฐ)๋“ค์„ ์ด์šฉํ•˜์—ฌ ๋ถ„๋ฅ˜๋ฅผ ์ง„ํ–‰ํ•˜๋Š” ๊ฒƒ์„ ๋งํ•ฉ๋‹ˆ๋‹ค.

 

๋งค์šฐ ๋‹จ์ˆœํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด์ง€๋งŒ ์ƒ๊ฐ๋ณด๋‹ค ์ข‹์€ ์„ฑ๋Šฅ์„ ๋‚ด๊ธฐ ๋•Œ๋ฌธ์— ๋“œ๋ž˜๊ณค๋ณผ์˜ ์ „ํˆฌ๋ ฅ ์ธก์ •๊ธฐ์™€ ๊ฐ™์€ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค.

 

์ฆ‰, KNN์•Œ๊ณ ๋ฆฌ์ฆ˜๋ณด๋‹ค ์ข‹์ง€ ๋ชปํ•œ ์„ฑ๋Šฅ์„ ๋‚ด๋Š” ๋ชจ๋ธ๋“ค์€ ๋ฏฟ๊ณ  ๊ฑธ๋Ÿฌ์ฃผ์‹œ๋ฉด ๋ฉ๋‹ˆ๋‹ค.

 

์ด๋ฒˆ ํฌ์ŠคํŒ…์—์„œ๋Š” KNN์— ๋Œ€ํ•ด ๋ฐฐ์›Œ๋ณด๋„๋ก ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

๐Ÿ”Ž KNN

KNN์€ ๊ฐ€์žฅ ์‰ฝ๊ณ  ์ง๊ด€์ ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ค‘ ํ•˜๋‚˜์ž…๋‹ˆ๋‹ค.

 

๋ถ„๋ฅ˜ํ•ด์•ผํ•  ๋ฐ์ดํ„ฐ์™€ ๊ฐ€์žฅ ๊ฐ€๊นŒ์šด ๋ฐ์ดํ„ฐ๋“ค์ด ํ•ด๋‹น ๋ฐ์ดํ„ฐ๋ฅผ ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค.

 

๋จธ์‹ ๋Ÿฌ๋‹์—์„œ ๊ฐ€์žฅ ๊ธฐ๋ณธ์ ์ธ concept์ž…๋‹ˆ๋‹ค.

 

๊ฐ€์žฅ ํฐ ํŠน์ง•์€ "Instance based Learning", "Memory based Learning", "Lazy Learning"์ด๋ผ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.

 

 

 

Instance based learning

๊ฐ๊ฐ์˜ ๊ด€์ธก์น˜(Instance)๋งŒ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด ์˜ˆ์ธก์„ ์ง„ํ–‰ํ•ฉ๋‹ˆ๋‹ค.

 

 

Memory based learning

๋ชจ๋“  ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ๋ฉ”๋ชจ๋ฆฌ์— ์ €์žฅํ•œ ๋’ค ์˜ˆ์ธก์„ ์‹œ๋„ํ•ฉ๋‹ˆ๋‹ค.

 

 

Lazy learning

๋ชจ๋ธ์„ ๋ณ„๋„๋กœ ํ•™์Šตํ•˜์ง€ ์•Š๊ณ  ํ…Œ์ŠคํŒ… ๋ฐ์ดํ„ฐ๊ฐ€ ๋“ค์–ด์˜ค๋Š” ์ˆœ๊ฐ„ ์ž‘๋™์„ ์‹œ์ž‘ํ•ฉ๋‹ˆ๋‹ค.

ํ•ด๋‹น ํŠน์ง•์— ๋Œ€ํ•ด์„œ๋Š” ํ•œ ๋ฒˆ ๋” ์–ธ๊ธ‰ํ•˜๋„๋ก ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

๐Ÿ”Ž Distance Metrric

KNN์„ ํ†ตํ•ด ์˜ˆ์ธก์„ ์ง„ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ฐ€๊นŒ์šด ๋ฐ์ดํ„ฐ๋“ค์„ ์ฐพ์•„์•ผ ํ•ฉ๋‹ˆ๋‹ค.

 

์ด๋ฒˆ ํฌ์ŠคํŒ…์—์„œ ๋ฐ์ดํ„ฐ ๊ฐ„์˜ ๊ฑฐ๋ฆฌ๋ฅผ ์ฐพ๋Š” ๋ฐฉ๋ฒ•์€ ๋‘ ๊ฐ€์ง€๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.

 

๋‘ ๊ฐ€์ง€ ๋ฐฉ๋ฒ•์ธ ๋งจํ•ดํŠผ ๊ฑฐ๋ฆฌ(Manhattan distance)์™€ ์œ ํด๋ฆฌ๋“œ ๊ฑฐ๋ฆฌ(Euclidean distance)์— ๋Œ€ํ•ด ์•Œ์•„๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

 

 

 

 

 

 

 

 

 

 

โœ๏ธ๋ฏผ์ฝ”์Šคํ‚ค ๊ฑฐ๋ฆฌ(Minkowski distance)

๋ฏผ์ฝ”์Šคํ‚ค ๊ฑฐ๋ฆฌ๋Š” ์•„๋ž˜์˜ ์ˆ˜์‹๊ณผ ๊ฐ™์ด ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

 

์šฐ๋ฆฌ๋Š” k๊ฐ€ 1 ๋˜๋Š” 2์ธ ๊ฒฝ์šฐ๋งŒ ์•Œ์•„๋ณผ ๊ฒƒ์ด๊ธฐ ๋•Œ๋ฌธ์— ๋ฏผ์ฝ”์Šคํ‚ค ๊ฑฐ๋ฆฌ์— ๋Œ€ํ•ด ์•Œ๊ณ  ์‹ถ์œผ์‹  ๋ถ„์€ ๋งํฌ๋ฅผ ์ฐธ์กฐํ•˜์‹œ๊ธฐ ๋ฐ”๋ž๋‹ˆ๋‹ค.

 

 

 

 

 

 

 

โœ๏ธ ๋งจํ•ดํŠผ ๊ฑฐ๋ฆฌ(Manhattan distance)

๋งจํ•ดํŠผ ๊ฑฐ๋ฆฌ๋Š” ๋ฏผ์ฝ”์Šคํ‚ค ๊ฑฐ๋ฆฌ์—์„œ k๊ฐ€ 1์ผ๋•Œ๋ฅผ ๋งํ•ฉ๋‹ˆ๋‹ค.

 

๋งจํ•ดํŠผ ๊ฑฐ๋ฆฌ๋Š” L1๊ฑฐ๋ฆฌ๋ผ๊ณ ๋„ ํ•ฉ๋‹ˆ๋‹ค.

 

๊ฐ๊ฐ์˜ ๋ณ€์ˆ˜๊ฐ’์˜ ์ฐจ์ด๋ฅผ ์ ˆ๋Œ“๊ฐ’์„ ์ทจํ•œ ํ•ฉ์˜ ๊ฑฐ๋ฆฌ๋ฅผ ๋งํ•ฉ๋‹ˆ๋‹ค.

 

์ด๋ฅผ ์ˆ˜์‹๊ณผ ๊ทธ๋ž˜ํ”„๋กœ ๋‚˜ํƒ€๋‚ด๋ฉด ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.

 

 

 

 

 

 

 

 

 

 

โœ๏ธ ์œ ํด๋ฆฌ๋“œ ๊ฑฐ๋ฆฌ(Euclidean distance)

์œ ํด๋ฆฌ๋“œ ๊ฑฐ๋ฆฌ๋Š” ๋ฏผ์ฝ”์Šคํ‚ค ๊ฑฐ๋ฆฌ์—์„œ k๊ฐ€ 2์ผ๋•Œ๋ฅผ ๋งํ•ฉ๋‹ˆ๋‹ค.

 

์œ ํด๋ฆฌ๋“œ ๊ฑฐ๋ฆฌ๋Š” L2๊ฑฐ๋ฆฌ๋ผ๊ณ ๋„ ํ•ฉ๋‹ˆ๋‹ค.

 

๊ฐ๊ฐ์˜ ๊ฑฐ๋ฆฌ์˜ ์ฐจ์˜ ์ œ๊ณฑ์˜ ํ•ฉ์„ ๋ฃจํŠธ ์”Œ์šด ๊ฑฐ๋ฆฌ๋ฅผ ๋งํ•ฉ๋‹ˆ๋‹ค.

 

์ฆ‰, ๊ฐ ๋ณ€์ˆ˜๊ฐ„์˜ ์ง์„  ๊ฑฐ๋ฆฌ๋ฅผ ๋งํ•ฉ๋‹ˆ๋‹ค.

 

์ด๋ฅผ ์ˆ˜์‹๊ณผ ๊ทธ๋ž˜ํ”„๋กœ ๋‚˜ํƒ€๋‚ด๋ฉด ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.

 

 

 

 

 

 

โœ๏ธ ๋งˆํ• ๋ผ๋…ธ๋น„์Šค ๊ฑฐ๋ฆฌ(Mahalanobis distance)

๋งˆํ• ๋ผ๋…ธ๋น„์Šค ๊ฑฐ๋ฆฌ(Mahalanobis distance)๋Š” ์œ ํด๋ฆฌ๋“œ ๊ฑฐ๋ฆฌ๊ฐ€ ๊ณต๋ถ„์‚ฐ ํ–‰๋ ฌ์— ์˜ํ•ด ๋‚˜๋ˆ„์–ด ์ง„ ๊ฒƒ์„ ๋งํ•ฉ๋‹ˆ๋‹ค.

 

๋†’์€ ๋ถ„์‚ฐ์—๋Š” ์งง์€ ๊ฑฐ๋ฆฌ๋ฅผ, ์ž‘์€ ๋ถ„์‚ฐ์—๋Š” ๋†’์€ ๊ฑฐ๋ฆฌ๋ฅผ ๋ถ€์—ฌํ•ฉ๋‹ˆ๋‹ค.

 

์ด๋ฅผ ์ˆ˜์‹๊ณผ ๊ทธ๋ž˜ํ”„๋กœ ๋‚˜ํƒ€๋‚ด๋ฉด ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.

 

 

 

 

๋” ์ž์„ธํ•˜๊ฒŒ ์•Œ๊ณ  ์‹ถ์œผ์‹  ๋ถ„์€ ์•„๋ž˜์˜ ๋งํฌ๋ฅผ ์ฐธ๊ณ ํ•ด์ฃผ์‹œ๋ฉด ๊ฐ์‚ฌํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

๐Ÿ”Ž Reference

https://en.wikipedia.org/wiki/Minkowski_distance

 

Minkowski distance - Wikipedia

From Wikipedia, the free encyclopedia Jump to navigation Jump to search Not to be confused with the pseudo-Euclidean metric of the Minkowski space. The Minkowski distance or Minkowski metric is a metric in a normed vector space which can be considered as a

en.wikipedia.org

https://en.wikipedia.org/wiki/Mahalanobis_distance

 

Mahalanobis distance - Wikipedia

From Wikipedia, the free encyclopedia Jump to navigation Jump to search The Mahalanobis distance is a measure of the distance between a point P and a distribution D, introduced by P. C. Mahalanobis in 1936.[1] Mahalanobis's definition was prompted by the

en.wikipedia.org

 

'AI > Machine Learning' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€

[ML] Nearest Neighbor Method - KNN(3)  (0) 2022.11.11
[ML] Nearest Neighbor Method - ์ •๊ทœํ™”(Normalization)(2)  (0) 2022.11.11
[ML] Regression(ํšŒ๊ท€)(3) - Logistic Regression(๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€)  (0) 2022.11.11
[ML] Regression(ํšŒ๊ท€)(2) - Model Evaluation(๋ชจ๋ธ ํ‰๊ฐ€)  (0) 2022.11.11
[ML] Regression(ํšŒ๊ท€)(1) - Linear Regression(์„ ํ˜• ํšŒ๊ท€)  (0) 2022.11.11
    'AI/Machine Learning' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€
    • [ML] Nearest Neighbor Method - KNN(3)
    • [ML] Nearest Neighbor Method - ์ •๊ทœํ™”(Normalization)(2)
    • [ML] Regression(ํšŒ๊ท€)(3) - Logistic Regression(๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€)
    • [ML] Regression(ํšŒ๊ท€)(2) - Model Evaluation(๋ชจ๋ธ ํ‰๊ฐ€)
    ์ดํƒœํ™
    ์ดํƒœํ™
    ๊ณต๋ถ€ํ•˜์ž ํƒœํ™์•„

    ํ‹ฐ์Šคํ† ๋ฆฌํˆด๋ฐ”